In health cohort studies, repeated measures of markers are often used to describe the natural history of a disease. Joint models allow to study their evolution by taking into account the possible informative dropout usually due to clinical events. However, joint modeling developments mostly focused on continuous Gaussian markers while, in an increasing number of studies, the actual marker of interest is non-directly measurable; it consitutes a latent quantity evaluated by a set of observed indicators from questionnaires or measurement scales. Classical examples include anxiety, fatigue, cognition. In this work, we explain how joint models can be extended to the framework of a latent quantity measured over time by markers of different nature (e.g. continuous, binary, ordinal). The longitudinal submodel describes the evolution over time of the quantity of interest defined as a latent process in a structural mixed model, and links the latent process to each marker repeated observation through appropriate measurement models. Simultaneously, the risk of multi-cause event is modelled via a proportional cause-specific hazard model that includes a function of the mixed model elements as linear predictor to take into account the association between the latent process and the risk of event. Estimation, carried out in the maximum likelihood framework and implemented in the R-package JLPM, has been validated by simulations. The methodology is illustrated in the French cohort on Multiple-System Atrophy (MSA), a rare and fatal neurodegenerative disease, with the study of dysphagia progression over time truncated by the occurrence of death.


翻译:在保健组群研究中,反复测量标记往往用于描述疾病自然史。联合模型允许研究其演变过程,方法是考虑到通常由于临床事件而可能出现的信息性失学现象。然而,联合模型发展主要侧重于连续高斯标记,而在越来越多的研究中,实际利益标记是非直接测量的;它含有由一组从调查问卷或测量尺度观察到的指标所评估的潜在数量;典型例子包括焦虑、疲劳、认知。在这项工作中,我们解释如何将联合模型扩展至由不同性质的标记(如连续、二进制、或非常规)测量的随时间测量的潜在数量框架。 纵向子模型描述了在一段时间后利息数量的演变,在一个结构混合模型中被界定为一种潜在过程,并将潜在过程与每个标记通过适当的测量模型或测量尺度反复观察联系起来。同时,多原因事件的风险通过一个比例性因子特定危害模型模型模拟,其中包括混合模型元素的功能,作为线性预测器,以考虑到在时间上由不同性质的标志性标记(如连续、双进、双进、双进、双进 )测量子模型描述了在结构模型中的风险。A-在模拟中,机尾部机变的机变变变的机机机机机机法中,机机机机变的机机变法的概率法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
57+阅读 · 2021年8月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关VIP内容
专知会员服务
57+阅读 · 2021年8月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员