Unsupervised domain adaptation (UDA) aims at adapting the model trained on a labeled source-domain dataset to an unlabeled target-domain dataset. The task of UDA on open-set person re-identification (re-ID) is even more challenging as the identities (classes) do not have overlap between the two domains. One major research direction was based on domain translation, which, however, has fallen out of favor in recent years due to inferior performance compared to pseudo-label-based methods. We argue that the domain translation has great potential on exploiting the valuable source-domain data but existing methods did not provide proper regularization on the translation process. Specifically, previous methods only focus on maintaining the identities of the translated images while ignoring the inter-sample relations during translation. To tackle the challenges, we propose an end-to-end structured domain adaptation framework with an online relation-consistency regularization term. During training, the person feature encoder is optimized to model inter-sample relations on-the-fly for supervising relation-consistency domain translation, which in turn, improves the encoder with informative translated images. The encoder can be further improved with pseudo labels, where the source-to-target translated images with ground-truth identities and target-domain images with pseudo identities are jointly used for training. In the experiments, our proposed framework is shown to achieve state-of-the-art performance on multiple UDA tasks of person re-ID. With the synthetic-to-real translated images from our structured domain-translation network, we achieved second place in the Visual Domain Adaptation Challenge (VisDA) in 2020.


翻译:未经监督的域适应(UDA) 旨在将在标签的源域数据集上培训的模型调整为未标记的目标域数据集。 UDA在开放设置的人的重新识别(re-ID)上的任务甚至更具挑战性,因为身份(类)在两个域之间没有重叠。一个主要研究方向是以域翻译为基础,但近年来由于与假标签方法相比性能低劣,这种翻译已经失去优势。我们认为,域翻译在利用宝贵的源域数据方面具有巨大的潜力,但现有方法并没有为翻译过程提供适当的规范化。具体地说,以前的方法只侧重于维护已翻译的图像的身份,而忽视了翻译过程中的图象之间的关系。为了应对挑战,我们提议了一个端对端对端的域适应框架,而一个在线关系一致性规范术语。在培训期间,个人特征编码被优化到模拟内部内部关系,用以监督关联域域数据翻译,而现有的方法并没有为翻译过程的域域域域翻译提供适当的正规化图像, 与我们使用的域域域图图像共同显示的域域变的域变的域图。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员