Shape matching has been a long-studied problem for the computer graphics and vision community. The objective is to predict a dense correspondence between meshes that have a certain degree of deformation. Existing methods either consider the local description of sampled points or discover correspondences based on global shape information. In this work, we investigate a hierarchical learning design, to which we incorporate local patch-level information and global shape-level structures. This flexible representation enables correspondence prediction and provides rich features for the matching stage. Finally, we propose a novel optimal transport solver by recurrently updating features on non-confident nodes to learn globally consistent correspondences between the shapes. Our results on publicly available datasets suggest robust performance in presence of severe deformations without the need for extensive training or refinement.
翻译:对计算机图形和视觉界来说,形状匹配是一个长期研究的问题。目标是预测具有某种程度变形的介质之间的密集对应关系。 现有的方法要么考虑抽样点的局部描述, 要么根据全球形状信息发现对应关系。 在这项工作中, 我们调查一个等级级学习设计, 我们把地方补丁级信息和全球形状结构纳入其中。 这种灵活的表达方式可以进行通信预测,并为匹配阶段提供丰富的特征。 最后, 我们提议一个新型的最佳运输解决方案, 经常更新非自信节点的功能, 以学习这些形状之间全球一致的对应关系。 我们在公开提供的数据集上的结果表明, 在出现严重变形的情况下, 不需要广泛的培训或改进, 我们的功能非常强。