An object detection pipeline comprises a camera that captures the scene and an object detector that processes these images. The quality of the images directly affects the performance of the object detector. Many works nowadays focus either on improving the image quality or improving the object detection models independently, but neglect the importance of joint optimization of the two subsystems. The goal of this paper is to tune the detection throughput and accuracy of existing object detectors in the remote sensing scenario by focusing on optimizing the input images tailored to the object detector. To achieve this, we empirically analyze the influence of two selected camera calibration parameters (camera distortion correction and gamma correction) and five image parameters (quantization, compression, resolution, color model, additional channels) for these applications. For our experiments, we utilize three UAV data sets from different domains and a mixture of large and small state-of-the-art object detector models to provide an extensive evaluation of the influence of the pipeline parameters. Finally, we realize an object detection pipeline prototype on an embedded platform for an UAV and give a best practice recommendation for building object detection pipelines based on our findings. We show that not all parameters have an equal impact on detection accuracy and data throughput, and that by using a suitable compromise between parameters we are able to achieve higher detection accuracy for lightweight object detection models, while keeping the same data throughput.
翻译:物体探测管道由摄像头和处理这些图像的物体探测器组成。图像的质量直接影响到物体探测器的性能。许多现在的工作重点是独立地改进图像质量或改进物体探测模型,但忽视了联合优化两个子系统的重要性。本文的目的是调整遥感情景中现有物体探测器的探测输送量和准确性,重点是优化为物体探测器定制的输入图像。为了实现这一点,我们实证地分析了两个选定的相机校准参数(摄像谱扭曲校正和伽马校正)和五个图像参数(定量、压缩、分辨率、颜色模型、其他渠道)对这些应用的影响。我们实验时,我们使用三个来自不同领域的UAV数据集以及一个大小型状态物体探测器的混合物,以广泛评价管道参数的影响。最后,我们发现一个用于UAV嵌入式平台的物体探测管道原型,并为根据我们发现的结果建立物体探测管道提供最佳做法建议。我们发现,在利用精确度和光度数据进行适当的检测时,并不是所有参数都具有同样的精确度,同时通过精确度,通过测量和光度模型,我们通过适当的测测算来达到适当的精确度。