The increasing use of deep neural networks in safety-critical applications requires the trained models to be well-calibrated. Most current calibration techniques address classification problems while focusing on improving calibration on in-domain predictions. Little to no attention is paid towards addressing calibration of visual object detectors which occupy similar space and importance in many decision making systems. In this paper, we study the calibration of current object detection models, particularly under domain shift. To this end, we first introduce a plug-and-play train-time calibration loss for object detection. It can be used as an auxiliary loss function to improve detector's calibration. Second, we devise a new uncertainty quantification mechanism for object detection which can implicitly calibrate the commonly used self-training based domain adaptive detectors. We include in our study both single-stage and two-stage object detectors. We demonstrate that our loss improves calibration for both in-domain and out-of-domain detections with notable margins. Finally, we show the utility of our techniques in calibrating the domain adaptive object detectors in diverse domain shift scenarios.
翻译:在安全关键应用中越来越多地使用深神经网络要求对经过训练的模型进行适当校准。大多数目前的校准技术处理分类问题,同时侧重于改进对内地预测的校准。很少注意处理对视觉物体探测器的校准问题,这些探测器在很多决策系统中占有类似的空间和重要性。在本文中,我们研究了对当前物体探测模型的校准,特别是在域位转移下。为此,我们首先为物体探测引入了插座和游戏列车时间校准损失。它可以用作辅助性损失功能,改进探测器的校准。第二,我们为物体探测设计一个新的不确定性量化机制,可以隐含地校准常用的以自我训练为基础的域适应性探测器。我们在研究中包括单级和两阶段的物体探测器。我们证明,我们的损失改进了现场和场外的校准,有显著的边距。最后,我们展示了在各种域转移情景中校准域适应性物体探测器的技术的实用性。