We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM), a class that generalizes several widely-used causal models in the literature. We establish their counterfactual identifiability for three common causal structures with unobserved confounding, and propose a practical learning method that casts learning a BGM as structured generative modeling. Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models. We evaluate our techniques in a visual task and demonstrate its application in a real-world video streaming simulation task.
翻译:我们用双向代机制(BGM)研究因果模型的反事实可识别性,这种模型在文献中概括了几个广泛使用的因果模型。我们为三种共同因果结构建立了反事实可识别性,而三个共同因果结构却未观察到的混乱,我们提出了一种实用的学习方法,将BGM作为结构化的基因模型学习。已学的BGM能够进行有效的反事实估计,并且可以使用各种深层的有条件的基因模型获得。我们评估了我们的技术,在视觉任务中,并展示了它在现实世界视频流模拟任务中的应用。