We present a priori and superconvergence error estimates of mixed finite element methods for the pseudostress-velocity formulation of the Oseen equation. In particular, we derive superconvergence estimates for the velocity and a priori error estimates under unstructured grids, and obtain superconvergence results for the pseudostress under certain structured grids. A variety of numerical experiments validate the theoretical results and illustrate the effectiveness of the superconvergent recovery-based adaptive mesh refinement. It is also numerically shown that the proposed postprocessing yields apparent superconvergence in a benchmark problem for the incompressible Navier--Stokes equation.
翻译:我们为Osearn等式的伪压力-速度配制提出了混合的有限要素方法的先验和超级一致误差估计数,特别是,我们在无结构的网格下得出速度和先验误差估计数的超一致估计数,并在某些结构化网格下取得伪压力的超异差结果。各种数字实验验证了理论结果,并说明了基于超级趋同的以回收为基础的适应性网目改进的效果。还用数字显示,拟议的后处理在无法压缩的纳维埃-斯托克斯等式的基准问题中产生了明显的超级一致。