We present a parallelized geometric multigrid (GMG) method, based on the cell-based Vanka smoother, for higher order space-time finite element methods (STFEM) to the incompressible Navier--Stokes equations. The STFEM is implemented as a time marching scheme. The GMG solver is applied as a preconditioner for GMRES iterations. Its performance properties are demonstrated for 2d and 3d benchmarks of flow around a cylinder. The key ingredients of the GMG approach are the construction of the local Vanka smoother over all degrees of freedom in time of the respective subinterval and its efficient application. For this, data structures that store pre-computed cell inverses of the Jacobian for all hierarchical levels and require only a reasonable amount of memory overhead are generated. The GMG method is built for the \emph{deal.II} finite element library. The concepts are flexible and can be transferred to similar software platforms.


翻译:我们以基于单元格的Vanka平滑器为基础,为无法压缩的导航-斯托克方程式提供了一种平行的几何多格多格(GMG)方法。 STFEM 是一个时间进化方案。 GMG求解器用作GMRES迭代的前提条件。 它的性能特征为圆柱圆圆周围的2d和3d流动基准。 GMG 方法的关键成分是,在相应次间隙及其有效应用期间,在各种自由度上建造本地的Vanka光滑器。 为此,所有等级层都储存了预合成单元格反向Jacobian的数据结构,只要求生成合理的内存管理量。 GMG方法是为\emph{deal.II} 有限元素库构建的。 概念是灵活的,可以转移到类似的软件平台 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
【访学归来】胡黎俐:苏黎世联邦理工教会我匠人精神
清华大学研究生教育
8+阅读 · 2019年8月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
【访学归来】胡黎俐:苏黎世联邦理工教会我匠人精神
清华大学研究生教育
8+阅读 · 2019年8月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员