Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of $q$-ary cyclic Singleton-optimal $(n, k, d=6;r=2)$-LRCs with length $n=3(q+1)$ when $3 \mid (q-1)$ and $q$ is even, and length $n=\frac{3}{2}(q+1)$ when $3 \mid (q-1)$ and $q \equiv 1(\bmod~4)$, respectively. To the best of our knowledge, this is the first construction of $q$-ary cyclic Singleton-optimal LRCs with length $n>q+1$ and minimum distance $d \geq 5$. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of $q$-ary perfect LRCs with length $n=\frac{q^m-1}{q-1}$, minimum distance $d=5$ and locality $r=2$.
翻译:本地可修理代码(LRCs)已成为分布式储存系统的重要编码办法,其修理成本相对较低,使用非故障节点的次数较少。对LRC的理论界限和最佳构造进行了广泛调查。通过循环和共环代码进行的优化LRC提供了优美的代谢结构及高效编码程序的极大好处。在本文中,我们继续考虑通过精密代码长度较长的周期和周期代码来建造最佳LRCs。具体地说,我们首先获得两类美元-美元一元一元双元的单流单吨最佳节点(n, k, d=6;r=2)美元-LRCs,其长度为3美元(q-1)美元和1美元,其长度为优等优等。当3美元(q-1美元)和1美元/克克元=美元(equiv 1\ bmod)时,我们首先获得两类的 美元单流纯纯纯值(rRC),这是我们最精密的单程1 5美元和双程的RRC。</s>