Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. Inspired by the recent work on binary cyclic codes published in IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 7842-7849, 2022, and the arXiv paper arXiv:2301.06446, the objectives of this paper are the construction and analyses of four infinite families of ternary cyclic codes with length $n=3^m-1$ for odd $m$ and dimension $k \in \{n/2, (n + 2)/2\}$ whose minimum distances have a square-root-like lower bound. Their duals have parameters $[n, k^\perp, d^\perp]$, where $k^\perp \in \{n/2, (n- 2)/2\}$ and $d^\perp$ also has a square-root-like lower bound. These families of codes and their duals contain distance-optimal cyclic codes.
翻译:循环码是一种有趣的线性码,由于其高效的编码和解码算法,在通信和存储系统中具有广泛应用。受2022年IEEE论文《IEEE Trans. Inf. Theory, vol.68, no.12, pp.7842-7849, 2022》和arXiv论文《arXiv:2301.06446》有关循环二元码的最近工作启发,本文旨在构建和分析四个无穷循环三元码族。这些码族的码长为$n=3^m-1$,其中$m$为奇数,维数$k \in \{n/2, (n + 2)/2\}$,其最小距离具有类似于平方根的下界。它们的对偶码具有参数$[n, k^\perp, d^\perp]$,其中$k^\perp \in \{n/2, (n- 2)/2\}$,$d^\perp$也具有类似于平方根的下界。这些码族及其对偶码包含距离最优循环码。