We consider the design of sublinear space and query complexity algorithms for estimating the cost of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a metric on $n$ points. We first consider the $o(n)$-space regime and show that, when the input is a stream of all $\binom{n}{2}$ entries of the metric, for any $\alpha \ge 2$, both MST and TSP cost can be $\alpha$-approximated using $\tilde{O}(n/\alpha)$ space, and that $\Omega(n/\alpha^2)$ space is necessary for this task. Moreover, we show that even if the streaming algorithm is allowed $p$ passes over a metric stream, it still requires $\tilde{\Omega}(\sqrt{n/\alpha p^2})$ space. We next consider the semi-streaming regime, where computing even the exact MST cost is easy and the main challenge is to estimate TSP cost to within a factor that is strictly better than $2$. We show that, if the input is a stream of all edges of the weighted graph that induces the underlying metric, for any $\varepsilon > 0$, any one-pass $(2-\varepsilon)$-approximation of TSP cost requires $\Omega(\varepsilon^2 n^2)$ space; on the other hand, there is an $\tilde{O}(n)$ space two-pass algorithm that approximates the TSP cost to within a factor of 1.96. Finally, we consider the query complexity of estimating metric TSP cost to within a factor that is strictly better than $2$, when the algorithm is given access to a matrix that specifies pairwise distances between all points. For MST estimation in this model, it is known that a $(1+\varepsilon)$-approximation is achievable with $\tilde{O}(n/\varepsilon^{O(1)})$ queries. We design an algorithm that performs $\tilde{O}(n^{1.5})$ distance queries and achieves a strictly better than $2$-approximation when either the metric is known to contain a spanning tree supported on weight-$1$ edges or the algorithm is given access to a minimum spanning tree of the graph.
翻译:暂无翻译