We propose simple active sampling and reweighting strategies for optimizing min-max fairness that can be applied to any classification or regression model learned via loss minimization. The key intuition behind our approach is to use at each timestep a datapoint from the group that is worst off under the current model for updating the model. The ease of implementation and the generality of our robust formulation make it an attractive option for improving model performance on disadvantaged groups. For convex learning problems, such as linear or logistic regression, we provide a fine-grained analysis, proving the rate of convergence to a min-max fair solution.
翻译:我们建议采用简单的主动抽样和重新加权战略,以优化通过最大限度地减少损失而获得的任何分类或回归模型的最小值公平性,我们的方法背后的关键直觉是,在每次时间从在更新模型的现有模式下最差的组别中取出一个数据点。执行的容易程度和我们稳健的提法的笼统性使得它成为改善弱势群体示范性业绩的有吸引力的选择。对于诸如线性或后勤性回归等细微的学习问题,我们提供了精细的分析,证明了与最低质量公平解决方案的趋同率。