We study the problem of actively learning a non-parametric choice model based on consumers' decisions. We present a negative result showing that such choice models may not be identifiable. To overcome the identifiability problem, we introduce a directed acyclic graph (DAG) representation of the choice model, which in a sense captures as much information about the choice model as could information-theoretically be identified. We then consider the problem of learning an approximation to this DAG representation in an active-learning setting. We design an efficient active-learning algorithm to estimate the DAG representation of the non-parametric choice model, which runs in polynomial time when the set of frequent rankings is drawn uniformly at random. Our algorithm learns the distribution over the most popular items of frequent preferences by actively and repeatedly offering assortments of items and observing the item chosen. We show that our algorithm can better recover a set of frequent preferences on both a synthetic and publicly available dataset on consumers' preferences, compared to the corresponding non-active learning estimation algorithms. This demonstrates the value of our algorithm and active-learning approaches more generally.
翻译:我们研究根据消费者的决定积极学习非参数选择模式的问题。 我们提出了一个负面结果, 显示这种选择模式可能无法识别。 为了克服识别性问题, 我们引入了选择模式的定向单极图(DAG)代表, 从某种意义上可以捕捉到关于选择模式的信息, 而信息理论则可以辨别。 然后我们考虑在积极的学习环境中学习与DAG代表的近似问题。 我们设计了一个高效的主动学习算法, 来估计非参数选择模式的DAG代表, 该非参数选择模式在多元时间内运行, 经常的排序是随机的。 我们的算法通过积极和反复提供项目分类并观察所选项目,来学习最受欢迎的项目。 我们的算法可以更好地恢复对消费者偏好的综合和公开数据集的频繁偏好, 与相应的非积极学习估计算法相比。 这显示了我们算法和积极学习方法的价值。