Estimating the importance of variables is an essential task in modern machine learning. This help to evaluate the goodness of a feature in a given model. Several techniques for estimating the importance of variables have been developed during the last decade. In this paper, we proposed a computational and theoretical exploration of the emerging methods of variable importance estimation, namely: Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), the Predictive Error Function (PERF), Random Forest (RF), and Extreme Gradient Boosting (XGBOOST) that were tested on different kinds of real-life and simulated data. All these methods can handle both regression and classification tasks seamlessly but all fail when it comes to dealing with data containing missing values. The implementation has shown that PERF has the best performance in the case of highly correlated data closely followed by RF. PERF and XGBOOST are "data-hungry" methods, they had the worst performance on small data sizes but they are the fastest when it comes to the execution time. SVM is the most appropriate when many redundant features are in the dataset. A surplus with the PERF is its natural cut-off at zero helping to separate positive and negative scores with all positive scores indicating essential and significant features while the negatives score indicates useless features. RF and LASSO are very versatile in a way that they can be used in almost all situations despite they are not giving the best results.


翻译:估计变量的重要性是现代机器学习中的一项基本任务。 这有助于评估特定模型中某个特征的优劣性。 过去十年中开发了几种估算变量重要性的技术。 在本文中, 我们提议对新出现的不同重要性估计方法进行计算和理论探索, 即: 最不绝对缩小和选择操作员(LASSO)、 支持矢量机(SVM)、 预测错误函数(PERF)、 随机森林(Random Forest) 和极快加速(XGBOOST) (XGBOST) 。 所有这些方法都可以无缝地处理回归和分类任务,但在处理含有缺失值的数据时,所有这些方法都失败了。 执行结果表明,在数据设置中,最密切相关的数据功能是“ 绝对缩小” (PERF) 和 XGBOOOST是“数据饥饿” 方法, 其性能最差的功能是小数据大小, 但是当时间到执行时,它们表现得最快。 当许多冗余的功能在数据设置中几乎是无用的, 但处理缺损性成绩的成绩特征时, 而自然分分分数显示, 。 顺差与分数与分数(PERF) 表示为正分数是最坏的分数是最坏的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员