A piecewise affine map is one of the simplest mathematical objects exhibiting complex dynamics. The reachability problem of piecewise affine maps is given as follows: Given two vectors $\mathbf{s}, \mathbf{t} \in \mathbb{Q}^d$ and a piecewise affine map $f$, is there $n\in \mathbb{N}$ such that $f^{n}(\mathbf{s}) = \mathbf{t}$? Koiran, Cosnard, and Garzon show that the reachability problem of piecewise affine maps is undecidable even in dimension 2. Most of the recent progress has been focused on decision procedures for one-dimensional piecewise affine maps, where the reachability problem has been shown to be decidable for some subclasses. However, the general undecidability discouraged research into positive results in arbitrary dimension. In this work, we consider a rich subclass of piecewise affine maps defined by Bellman operators of Markov decision processes (MDPs). We then investigate the restriction of the piecewise affine reachability problem to that with Bellman operators and, in particular, its decidability in any dimension. As one of our primary contributions, we establish the decidability of reachability for two-dimensional Bellman operators, in contrast to the negative result known for general piecewise affine maps.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员