Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus on the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 \times 64$, $128 \times 128$ and $256 \times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.
翻译:最近的研究显示,在图像几代人中取得了显著的成功。 然而,大多数现有方法只是通过随机噪音生成脸部图像,无法根据特定属性生成脸部图像。 在本文中,我们侧重于从属性中生成面部合成的问题,目的是生成与给定属性相应的面部特征。 为此,我们建议了一种新颖的特征,通过基因对抗网络AFGAN来识别面部图像生成方法。具体地说,我们首先建议了一种双向嵌入层和自我注意机制,将二进制属性矢量转换为丰富的属性特征。 然后,三个堆叠式生成器通过将属性特性特性作为投入,分别生成64 美元, 128 美元, 128 美元 美元, 256 美元 美元 分辨率。 此外,还提议了图像属性匹配损失,以加强生成图像与输入属性之间的联系。 有关CeebA的广泛实验显示了我们的AFGAN在定性和定量评估方面的优势。