This article proposes a Bayesian approach to estimating the spectral density of a stationary time series using a prior based on a mixture of P-spline distributions. Our proposal is motivated by the B-spline Dirichlet process prior of Edwards et al. (2019) in combination with Whittle's likelihood and aims at reducing the high computational complexity of its posterior computations. The strength of the B-spline Dirichlet process prior over the Bernstein-Dirichlet process prior of Choudhuri et al. (2004) lies in its ability to estimate spectral densities with sharp peaks and abrupt changes due to the flexibility of B-splines with variable number and location of knots. Here, we suggest to use P-splines of Eilers and Marx (1996) that combine a B-spline basis with a discrete penalty on the basis coefficients. In addition to equidistant knots, a novel strategy for a more expedient placement of knots is proposed that makes use of the information provided by the periodogram about the steepness of the spectral power distribution. We demonstrate in a simulation study and two real case studies that this approach retains the flexibility of the B-splines, achieves similar ability to accurately estimate peaks due to the new data-driven knot allocation scheme but significantly reduces the computational costs.
翻译:本条提议采用巴伊西亚办法,利用P-spline分布混合物的事先方法,估计固定时间序列的光谱密度。我们的建议受Edwards等人(2019年)之前的B-spline Dirichlet进程以及惠特尔的可能性(2019年)的推动,目的是降低其后数计算方法的高度计算复杂性。B-spline Dirichlet进程在Bernstein-Dirichlet进程之前的B-spline Dirichlet进程在Choudhuri等人(2004年) (2004年) 之前的强度在于它是否有能力估计光谱密度,以及由于B-spline具有可变数字和结节位置的灵活性而出现突变变化。我们在这里建议使用Eilers和Marx(1996年)的P-spline进程,将B-spline基础计算方法与离散惩罚结合起来。除了离子结之外,还提出了更迅速安排结的新战略,即利用关于光谱动力分布陡峭度的时期图所提供的信息。我们通过模拟式研究展示了类似的能力模型,但两个实际的计算方法又大幅度地减少了这一精确地压定了速度。