The parallel full approximation scheme in space and time (PFASST) is a parallel-in-time integrator that allows to integrate multiple time-steps simultaneously. It has been shown to extend scaling limits of spatial parallelization strategies when coupled with finite differences, spectral discretizations, or particle methods. In this paper we show how to use PFASST together with a finite element discretization in space. While seemingly straightforward, the appearance of the mass matrix and the need to restrict iterates as well as residuals in space makes this task slightly more intricate. We derive the PFASST algorithm with mass matrices and appropriate prolongation and restriction operators and show numerically that PFASST can, after some initial iterations, gain two orders of accuracy per iteration.
翻译:空间和时间的平行全近似计划(PFASST)是一个平行时间集成器,可以同时结合多个时间步骤。 事实证明,如果与有限差异、光谱分解或粒子方法相结合,可以扩大空间平行战略的缩放限制。 在本文中,我们展示了如何使用PFASST以及空间的有限元素分解。 质量矩阵的外观和限制迭代和空间残渣的必要性虽然看似直截了当,但使这项任务略微复杂。 我们用质量矩阵和适当的延长和限制操作器来计算PFASST的算法,并用数字显示,PFASST在一些初始迭代之后,每迭代能获得两个精确度。