Microscopy research often requires recovering particle-size distributions in three dimensions from only a few (10 - 200) profile measurements in the section. This problem is especially relevant for petrographic and mineralogical studies, where parametric assumptions are reasonable and finding distribution parameters from the microscopic study of small sections is essential. This paper deals with the specific case where particles are approximately spherical (i.e. Wicksell's problem). The paper presents a novel approximation of the probability density of spherical particle profile sizes. This approximation uses the actual non-smoothness of mineral particles rather than perfect spheres. The new approximation facilitates the numerically efficient use of the maximum likelihood method, a generally powerful method that provides the distribution parameter estimates of the minimal variance in most practical cases. The variance and bias of the estimates by the maximum likelihood method were compared numerically for several typical particle-size distributions with those by alternative parametric methods (method of moments and minimum distance estimation), and the maximum likelihood estimation was found to be preferable for both small and large samples. The maximum likelihood method, along with the suggested approximation, may also be used for selecting a model, for constructing narrow confidence intervals for distribution parameters using all the profiles without random sampling and for including the measurements of the profiles intersected by section boundaries. The utility of the approach is illustrated using an example from glacier ice petrography.


翻译:显微镜研究往往要求从本节的少数(10-200)剖面测量中,从几个(10-200)剖面测量中,从三个维度中恢复粒子大小分布。这个问题对于石质学和矿物学研究来说特别相关,因为在这些研究中,参数假设是合理的,从微小部分的微小研究中找到分布参数至关重要。本文涉及粒子大致球状(即威克赛尔的问题)的具体案例。本文对球状粒子剖面大小的概率密度作了新的近似。这一近似利用了矿物颗粒的实际非移动性而不是完美的范围。新近似法有利于以数字方式高效地使用最大可能性方法,这是一种普遍有力的方法,在多数实际情况下提供最小差异的分布参数估计数。根据最大可能性方法对若干典型粒子大小分布的数值进行了数字比较(即微量和最小距离估计),发现对小型和大型样品都使用最大的可能性估计。除了建议的精确度外,还可以使用最有可能的方法以及建议的近似性方法,一种普遍有力的方法,即提供最实际情况下最小差异的分布参数估计。使用一个模型,通过模型来计算。

0
下载
关闭预览

相关内容

【上海交大】<操作系统> 2021课程,附课件
专知会员服务
42+阅读 · 2021年4月3日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
42+阅读 · 2021年4月3日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员