For a bounded subset $S$ of $d\times d$ complex matrices, the Berger-Wang theorem and Bochi's inequality allow to approximate the joint spectral radius of $S$ from below by the spectral radius of a short product of elements from $S$. Our goal is two-fold: we review these results, providing self-contained proofs, and we derive an improved version with explicit bounds that are polynomial in $d$. We also discuss other complete valued fields.
翻译:对于以美元为单位的复杂基质,Berger-Wang理论和Bochi的不平等性使得一个约束子集(S)美元($d-times d$ ) 的复杂基质,Berger-Wang理论和Bochi的不平等性使得从下方的光谱半径($S美元)到元素短产的光谱半径($S美元)的下方大约为$S美元。我们的目标是双重的:我们审查这些结果,提供自足的证明,并且我们得出一个改良版,其明确界限以美元为单位。我们还讨论其他完整的有价值的领域。