We study the problem of fairly allocating a multiset $M$ of $m$ indivisible items among $n$ agents with additive valuations. Specifically, we introduce a parameter $t$ for the number of distinct types of items and study fair allocations of multisets that contain only items of these $t$ types, under two standard notions of fairness: 1. Envy-freeness (EF): For arbitrary $n$, $t$, we show that a complete EF allocation exists when at least one agent has a unique valuation and the number of items of each type exceeds a particular threshold. We give explicit upper and lower bounds on this threshold. 2. Envy-freeness up to any good (EFX): For arbitrary $n$, $m$, and for $t\le 2$, we show that a complete EFX allocation always exists. We give two different proofs of this result. One proof is constructive and runs in polynomial time; the other is geometrically inspired.
翻译:我们研究了在具有添加值的美元代理商之间公平分配多套美元美元(m)不可分割物品的问题。具体地说,我们为不同种类物品的数量引入了一个参数美元,并根据两个标准公平概念研究只包含这些美元类型的物品的多套物品的公平分配:1. 无损(EF):对于任意性($),美元(t$),我们表明,当至少一个代理商有一个独特的估值,而每一类物品的数量超过某一阈值时,就存在完全的EF分配。我们对这一阈值给出明确的上下限。2. 任何好的无损(EFX):对于任意性(n)美元($)和2美元(t\le$),我们表明完全的EFX分配始终存在。我们对这种结果给出了两种不同的证明。一种证据是建设性的,在多元时间内运行;另一种则有几何推理的灵感。