Detecting hidden geometrical structures from surface measurements under electromagnetic, acoustic, or mechanical loading is the goal of noninvasive imaging techniques in medical and industrial applications. Solving the inverse problem can be challenging due to the unknown topology and geometry, the sparsity of the data, and the complexity of the physical laws. Physics-informed neural networks (PINNs) have shown promise as a simple-yet-powerful tool for problem inversion, but they have yet to be applied to general problems with a priori unknown topology. Here, we introduce a topology optimization framework based on PINNs that solves geometry detection problems without prior knowledge of the number or types of shapes. We allow for arbitrary solution topology by representing the geometry using a material density field that approaches binary values thanks to a novel eikonal regularization. We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in linear and nonlinear elastic bodies using measurements of outer surface displacement from a single mechanical loading experiment. Our methodology opens a pathway for PINNs to solve various engineering problems targeting geometry optimization.
翻译:在电磁、声学或机械载荷下从表面测量中检测隐藏的几何结构是医疗和工业应用中非侵入性成像技术的目标。解决逆向问题可能由于未知的地形和几何、数据的宽度和物理法则的复杂性而具有挑战性。物理知情神经网络(PINNs)显示,它是一个简单但无作用的倒置问题工具,但它们尚未应用于先天未知的地形学一般问题。这里,我们引入了一个基于PINNs的地形优化框架,在不事先了解形状数量或类型的情况下解决几何学探测问题。我们允许通过使用一个物质密度领域来代表该地理学,该物质密度领域由于新的电离子系统规范而接近二元值。我们验证了我们的框架,通过从单一机械装载实验中测量外表位移位的测量,发现隐性真空的数量、位置和形状,并纳入线性和非线性弹性体中。我们的方法为PINNs打开了解决各种工程学问题的路径。</s>