We prove a central limit theorem for network moments in a model of network formation with strategic interactions and homophilous agents. Since data often consists of observations on a single large network, we consider an asymptotic framework in which the network size diverges. We argue that a modification of "exponential stabilization" conditions from the literature on geometric graphs provides a useful high-level formulation of weak dependence, which we use to establish an abstract central limit theorem. We then derive primitive conditions for stabilization using results in branching process theory. We discuss practical inference procedures justified by our results and outline a methodology for deriving primitive conditions that can be applied more broadly to other large network models with strategic interactions.
翻译:我们证明,在由战略互动和同质物剂组成的网络模式中,我们是一个网络时刻的中心限制理论。由于数据通常包含对单一大型网络的观测,因此我们考虑一个网络大小各不相同的零星框架。我们争辩说,从几何图文献中修改“极端稳定”条件提供了一种有用的高层次的弱依赖性配方,我们用这种配方来建立一个抽象的中心限制理论。然后,我们利用分流过程理论的结果来得出原始的稳定条件。我们讨论了以我们的结果为根据的实际推论程序,并概述了一种产生原始条件的方法,可以更广泛地应用于具有战略互动的其他大型网络模式。