Sobol' indices and Shapley effects are attractive methods of assessing how a function depends on its various inputs. The existing literature contains various estimators for these two classes of sensitivity indices, but few estimators of Sobol' indices and no estimators of Shapley effects are computationally tractable for moderate-to-large input dimensions. This article provides a Shapley-effect estimator that is computationally tractable for a moderate-to-large input dimension. The estimator uses a metamodel-based approach by first fitting a Bayesian Additive Regression Trees model which is then used to compute Shapley-effect estimates. This article also establishes posterior contraction rates on a large function class for this Shapley-effect estimator and for the analogous existing Sobol'-index estimator. Finally, this paper explores the performance of these Shapley-effect estimators on four different test functions for moderate-to-large input dimensions and number of observations.
翻译:摘要:Sobol'指数和Shapley效应是评估函数如何依赖于其各种输入的吸引人的方法。现有文献中存在各种这两类灵敏度指标的估计器,但几乎没有 Sobol'指数的估计器和没有 Shapley效应的估计器在中大型输入维度下是计算可行的。本文提供了一个对于中大型输入维度而言计算可行的 Shapley-effect 估计器。该估计器采用了一个基于元模型的方法,首先通过拟合贝叶斯加性回归树模型,然后用于计算 Shapley-effect 估计值。本文还为这个 Shapley-effect 估计器和类似的已有 Sobol'-index 估计器,在大型函数类上建立了后验收缩速率。最后,本文探讨了这些 Shapley-effect 估计器在中大型输入维度和观测数量下的四个不同测试函数上的表现。