In this paper, we propose physics-informed neural operators (PINO) that uses available data and/or physics constraints to learn the solution operator of a family of parametric Partial Differential Equation (PDE). This hybrid approach allows PINO to overcome the limitations of purely data-driven and physics-based methods. For instance, data-driven methods fail to learn when data is of limited quantity and/or quality, and physics-based approaches fail to optimize on challenging PDE constraints. By combining both data and PDE constraints, PINO overcomes all these challenges. Additionally, a unique property that PINO enjoys over other hybrid learning methods is its ability to incorporate data and PDE constraints at different resolutions. This allows us to combine coarse-resolution data, which is inexpensive to obtain from numerical solvers, with higher resolution PDE constraints, and the resulting PINO has no degradation in accuracy even on high-resolution test instances. This discretization-invariance property in PINO is due to neural-operator framework which learns mappings between function spaces and allows evaluation at different resolutions without the need for re-training. Moreover, PINO succeeds in the purely physics setting, where no data is available, while other approaches such as the Physics-Informed Neural Network (PINN) fail due to optimization challenges, e.g. in multi-scale dynamic systems such as Kolmogorov flows. This is because PINO learns the solution operator by optimizing PDE constraints on multiple instances while PINN optimizes PDE constraints of a single PDE instance. Further, in PINO, we incorporate the Fourier neural operator (FNO) architecture which achieves orders-of-magnitude speedup over numerical solvers and also allows us to compute explicit gradients on function spaces efficiently.
翻译:本文提出了物理启发神经算子(Physics-Informed Neural Operator,PINO)算法,该算法利用可用数据和/或物理约束条件来学习一系列参数化偏微分方程(Partial Differential Equation,PDE)的解算符。这种混合方法使PINO能够克服仅采用数据驱动方法和仅采用基于物理方法的局限性。例如,当数据的数量和/或质量有限时,数据驱动方法失败,而基于物理的方法则无法在具有挑战性的PDE约束条件下进行优化。通过结合数据和PDE约束条件,PINO克服了所有这些挑战。此外,PINO相对于其他混合学习方法享有的独特属性是其能够在不同的分辨率下合并数据和PDE约束条件。这使我们能够将低分辨率数据(从数值求解器获取而又不昂贵)与高分辨率PDE约束条件相结合,从而得到的PINO在高分辨率测试实例上的准确性没有降低。PINO在离散不变性方面的表现优异,这是由于神经算子框架可以学习函数空间之间的映射,而无需重新训练即可以在不同的分辨率下进行评估。此外,PINO在纯物理环境下成功,即没有数据可用,而其他方法(例如物理启发神经网络,PINN)由于优化挑战而失败,例如在Kolmogorov流等多尺度动态系统中。这是因为PINO通过在多个实例上优化PDE约束条件来学习解算符,而PINN则通过优化单个PDE实例的PDE约束条件。此外,在PINO中,我们融合了傅里叶神经算子(Fourier Neural Operator,FNO)架构,可以比数值求解器快几个数量级,并且还可以高效地在函数空间上计算明确的梯度。