项目名称: 微分方程周期解问题的全局收敛性算法研究
项目编号: No.U1304103
项目类型: 联合基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 苏孟龙
作者单位: 洛阳师范学院
项目金额: 30万元
中文摘要: 本项目拟针对满足不同锥条件的约束区域所对应的约束函数进行合理的扰动,进而提出非内点同伦路径跟踪算法,使得初始点能够在整个n维空间内任意选取,大大提高算法的计算效率。在此基础上,本项目再针对两类重要的微分方程周期解问题,即Duffing微分方程和Liénard微分方程周期解问题,寻求一些新的思想,采取不同的处理技巧,使得非内点同伦路径跟踪算法能够求解这两类微分方程周期解问题,彻底去掉已有结果对李雅普诺夫函数的凸性要求,以便更好地应用李雅普诺夫第二方法,同时也为微分方程周期解问题提供一个新的高效的全局收敛性算法。
中文关键词: 初始点;计算效率;周期解问题;构造性证明;
英文摘要: In this project, we apply appropriate perturbations to the constraint functions which form the constraint region satisfying different cone conditions, and thereby develop a non-interior point homotopy path-following algorithm. By using this new algorithm, we are able to choose initial points in the whole n dimensional space. This can improve the computational efficiency of the algorithm greatly. Then for the periodicity problems of two class of important differential equations, i.e., Duffing and Liénard differential equations, we introduce some new ideas and adopt different techniques to make the non-interior point homotopy path-following algorithm be able to solve these two class of periodicity problems, removing the convexity assumptions on Liapunov functions of the results in the literature completely and thus using the second method of Liapunov better than before. At the same time, we also provide a new efficient globally convergent algorithm to solve the periodicity problems of differential equations in this project.
英文关键词: initial points;computational efficiency;periodicity problems;constructive proofs;