Neural networks have been increasingly employed in Model Predictive Controller (MPC) to control nonlinear dynamic systems. However, MPC still poses a problem that an achievable update rate is insufficient to cope with model uncertainty and external disturbances. In this paper, we present a novel control scheme that can design an optimal tracking controller using the neural network dynamics of the MPC, making it possible to be applied as a plug-and-play extension for any existing model-based feedforward controller. We also describe how our method handles a neural network containing history information, which does not follow a general form of dynamics. The proposed method is evaluated by its performance in classical control benchmarks with external disturbances. We also extend our control framework to be applied in an aggressive autonomous driving task with unknown friction. In all experiments, our method outperformed the compared methods by a large margin. Our controller also showed low control chattering levels, demonstrating that our feedback controller does not interfere with the optimal command of MPC.
翻译:模型预测控制器(MPC)越来越多地使用神经网络来控制非线性动态系统。然而,多功能控制器(MPC)仍然提出了一个问题,即可以实现的更新率不足以应对模型不确定性和外部扰动。在本文中,我们提出了一个新的控制方案,利用多功能控制器的神经网络动态设计一个最佳的跟踪控制器,从而有可能作为任何现有基于模型的饲料向前控制器的插座和播放延伸。我们还描述了我们的方法如何处理一个包含历史信息的神经网络,该神经网络不遵循一般的动态形式。拟议方法是根据其传统控制基准对外部扰动的性能进行评估的。我们还扩展了我们的控制框架,以便用于一个充满未知摩擦的主动自主驱动任务。在所有实验中,我们的方法都比比较方法高。我们的控制器也显示低控制振动水平,表明我们的反馈控制器不会干扰多功能控制器的最佳指挥。