Human intuition allows to detect abnormal driving scenarios in situations they never experienced before. Like humans detect those abnormal situations and take countermeasures to prevent collisions, self-driving cars need anomaly detection mechanisms. However, the literature lacks a standard benchmark for the comparison of anomaly detection algorithms. We fill the gap and propose the R-U-MAAD benchmark for unsupervised anomaly detection in multi-agent trajectories. The goal is to learn a representation of the normal driving from the training sequences without labels, and afterwards detect anomalies. We use the Argoverse Motion Forecasting dataset for the training and propose a test dataset of 160 sequences with human-annotated anomalies in urban environments. To this end we combine a replay of real-world trajectories and scene-dependent abnormal driving in the simulation. In our experiments we compare 11 baselines including linear models, deep auto-encoders and one-class classification models using standard anomaly detection metrics. The deep reconstruction and end-to-end one-class methods show promising results. The benchmark and the baseline models will be publicly available.
翻译:人类直觉可以发现在他们从未经历过的情况下的异常驾驶情况。像人类探测这些异常情况并采取反措施来防止碰撞一样,自驾驶汽车需要异常现象检测机制。然而,文献缺乏比较异常现象检测算法的标准基准。我们填补了空白并提出R-U-MAAD基准,用于在多试剂轨迹中进行不受监督的异常检测。目标是从没有标签的培训序列中了解正常驾驶的表示,然后发现异常现象。我们使用逆向动态预测数据集进行培训,并提出由160个序列组成的测试数据集,其中在城市环境中带有人类附加说明的异常现象。为此,我们将在模拟中将真实世界轨迹和场外异常驾驶结合起来。在我们的实验中,我们用标准的异常现象检测度指标对11个基线进行了比较,包括线性模型、深度自动电算器和单级分类模型。深度重建和端端至端一等方法显示了有希望的结果。基准和基线模型将公开提供。