We provide the first comprehensive study on how to classify trajectories using only their spatial representations, measured on 5 real-world data sets. Our comparison considers 20 distinct classifiers arising either as a KNN classifier of a popular distance, or as a more general type of classifier using a vectorized representation of each trajectory. We additionally develop new methods for how to vectorize trajectories via a data-driven method to select the associated landmarks, and these methods prove among the most effective in our study. These vectorized approaches are simple and efficient to use, and also provide state-of-the-art accuracy on an established transportation mode classification task. In all, this study sets the standard for how to classify trajectories, including introducing new simple techniques to achieve these results, and sets a rigorous standard for the inevitable future study on this topic.
翻译:我们第一次全面研究如何仅使用空间表达方式对轨迹进行分类,根据5个真实世界数据集进行测量。我们的比较考虑了20个不同的分类方法,这些分类方法要么是广受欢迎的KNN分类器,要么是使用每种轨迹的矢量表示法进行分类的更为一般的分类方法。我们还开发了新方法,通过数据驱动方法将轨迹进行传导,以选择相关的里程碑,这些方法在我们的研究中证明最为有效。这些传导方法使用简便而有效,也为既定的运输模式分类任务提供了最先进的准确性。总的来说,本研究为如何对轨迹进行分类制定了标准,包括采用新的简单技术来取得这些结果,并为今后不可避免的这一专题研究制定严格的标准。