Reinforcement learning methods as a promising technique have achieved superior results in the motion planning of free-floating space robots. However, due to the increase in planning dimension and the intensification of system dynamics coupling, the motion planning of dual-arm free-floating space robots remains an open challenge. In particular, the current study cannot handle the task of capturing a non-cooperative object due to the lack of the pose constraint of the end-effectors. To address the problem, we propose a novel algorithm, EfficientLPT, to facilitate RL-based methods to improve planning accuracy efficiently. Our core contributions are constructing a mixed policy with prior knowledge guidance and introducing infinite norm to build a more reasonable reward function. Furthermore, our method successfully captures a rotating object with different spinning speeds.
翻译:作为一种有希望的技术,强化学习方法在自由漂浮的空间机器人的运动规划方面取得了优异的成果,然而,由于规划层面的增加和系统动态结合的加强,双臂自由漂浮的空间机器人的运动规划仍是一个公开的挑战,特别是,目前的研究无法完成捕获一个不合作的物体的任务,因为最终效应因素缺乏制约因素。为了解决这个问题,我们提议了一个新的算法,即高效LPT,以促进基于RL的方法来提高规划的准确性。我们的核心贡献正在构建一种混合的政策,同时提供先前的知识指导,并引入无限规范来建立一个更合理的奖励功能。此外,我们的方法成功地捕捉了一个旋转速度不同的旋转物体。