In this paper, we develop a Monte Carlo algorithm named the Frozen Gaussian Sampling (FGS) to solve the semiclassical Schr\"odinger equation based on the frozen Gaussian approximation. Due to the highly oscillatory structure of the wave function, traditional mesh-based algorithms suffer from "the curse of dimensionality", which gives rise to more severe computational burden when the semiclassical parameter \(\ep\) is small. The Frozen Gaussian sampling outperforms the existing algorithms in that it is mesh-free in computing the physical observables and is suitable for high dimensional problems. In this work, we provide detailed procedures to implement the FGS for both Gaussian and WKB initial data cases, where the sampling strategies on the phase space balance the need of variance reduction and sampling convenience. Moreover, we rigorously prove that, to reach a certain accuracy, the number of samples needed for the FGS is independent of the scaling parameter \(\ep\). Furthermore, the complexity of the FGS algorithm is of a sublinear scaling with respect to the microscopic degrees of freedom and, in particular, is insensitive to the dimension number. The performance of the FGS is validated through several typical numerical experiments, including simulating scattering by the barrier potential, formation of the caustics and computing the high-dimensional physical observables without mesh.


翻译:在本文中, 我们开发了一个名为 Frozen Gaussian 抽样的蒙特卡洛算法, 名为 Frozen Gaussian 抽样法( FGS ), 以解决基于冷冻高斯近似( Gausian ) 的半古典 Schr\” 调方程式。 由于波函数的高度血管结构, 传统的网状算法会受到“ 维度诅咒” 的影响, 当半古典参数(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \ 现有的算法,, 因为它在计算物理观察物理观察中, FGS的精度的精度的精度, 的精度, 直度, 直度, 直度, 直度, 和直径的, 直观的, 直径的, 直观的, 直观的, 直观的, 直观的, 直观的, 直径直径直观, 直观, 直径直径直观, 的, 的, 的, 的, 直观, 直观, 直观, 直观, 直观, 直径直径直观的, 直观的, 的, 的, 直观, 直观的, 直观, 直观, 直观的, 的 直观, 直观, 的 的 的 的 的 的 的 的 度, 度, 度, 度, 度, 直观, 度, 度, 直观, 直观, 度, 度, 直观, 直观, 度, 的, 的, 的, 直观, 直观, 直观, 度, 直观, 直观, 的, 的 的

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
从贝叶斯理论到图像马尔科夫随机场
人工智能头条
6+阅读 · 2018年5月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
0+阅读 · 2022年2月12日
VIP会员
Top
微信扫码咨询专知VIP会员