We develop a novel a posteriori error estimator for the L2 error committed by the finite element discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi-discretization scheme using a rational approximation which allows to reformulate the fractional problem into a family of non-fractional parametric problems. The estimator involves applying the implicit Bank-Weiser error estimation strategy to each parametric non-fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.
翻译:我们开发了一个新颖的L2 误差后补误估计器, 用于计算分数问题解决方案的有限分解元素造成的L2错误。 我们的后补误估计器利用了使用合理近似法的半分解方案, 从而可以将分数问题重新划分成一个非不偏差问题家庭。 估计器涉及对每个非对称非对称问题应用隐含的银行- Weiser 误差估计策略, 并通过用来计算原分数问题解决方案的相同合理近似法重建分数错误。 我们在两个和三个分层中提供了几个数字例子, 表明我们的估计器具有不同分数能力, 并且能够推动适应性网格改进策略。