Though deep learning has been applied successfully in many scenarios, malicious inputs with human-imperceptible perturbations can make it vulnerable in real applications. This paper proposes an error-correcting neural network (ECNN) that combines a set of binary classifiers to combat adversarial examples in the multi class classification problem. To build an ECNN, we propose to design a code matrix so that the minimum Hamming distance between any two rows (i.e., two codewords) and the minimum shared information distance between any two columns (i.e., two partitions of class labels) are simultaneously maximized. Maximizing row distances can increase the system fault tolerance while maximizing column distances helps increase the diversity between binary classifiers. We propose an end-to-end training method for our ECNN, which allows further improvement of the diversity between binary classifiers. The end-to-end training renders our proposed ECNN different from the traditional error-correcting output code (ECOC) based methods that train binary classifiers independently. We empirically demonstrate that our proposed ECNN is effective against the state-of-the-art white-box attacks while maintaining good classification accuracy on normal examples.
翻译:虽然在很多情况下都成功地应用了深层次的学习,但恶意输入的人类无法察觉的扰动会使其在实际应用中变得脆弱。本文件提议了一个错误更正神经网络(ECNN),将一组二进制分类者结合起来,以对抗多类分类问题中的对抗性实例。为了建立一个ECNN,我们提议设计一个代码矩阵,以便在任何两行(即两个编码词)和任何两列(即两个类标签分区)之间最小共享的信息距离之间设计一个最小的编码矩阵,从而使我们提议的ECNNN不同于基于独立培训二进制分类者的传统错误更正输出代码(ECC)。最大化的行距可以增加系统的过错容忍度,同时使列距离最大化有助于增加二进制分类者之间的多样性。我们提议了一个我们的ECNNN的端对端培训方法,以便进一步改善二进制分类者之间的多样性。端对端到端培训使我们提议的ECNN与基于传统错误修正输出代码(即两个分类师的方法)的不同之处。我们的经验证明我们提议的ECNNN在常规的白箱攻击中保留正确性范例的同时,对状态的白箱攻击有效。