Machine learning methods for conditional data generation usually build a mapping from source conditional data X to target data Y. The target Y (e.g., text, speech, music, image, video) is usually high-dimensional and complex, and contains information that does not exist in source data, which hinders effective and efficient learning on the source-target mapping. In this paper, we present a learning paradigm called regeneration learning for data generation, which first generates Y' (an abstraction/representation of Y) from X and then generates Y from Y'. During training, Y' is obtained from Y through either handcrafted rules or self-supervised learning and is used to learn X-->Y' and Y'-->Y. Regeneration learning extends the concept of representation learning to data generation tasks, and can be regarded as a counterpart of traditional representation learning, since 1) regeneration learning handles the abstraction (Y') of the target data Y for data generation while traditional representation learning handles the abstraction (X') of source data X for data understanding; 2) both the processes of Y'-->Y in regeneration learning and X-->X' in representation learning can be learned in a self-supervised way (e.g., pre-training); 3) both the mappings from X to Y' in regeneration learning and from X' to Y in representation learning are simpler than the direct mapping from X to Y. We show that regeneration learning can be a widely-used paradigm for data generation (e.g., text generation, speech recognition, speech synthesis, music composition, image generation, and video generation) and can provide valuable insights into developing data generation methods.


翻译:有条件数据生成的机器学习方法通常是从源代码有条件的数据X到目标音乐Y。 目标Y(例如文字、语言、音乐、图像、视频)通常具有高度和复杂性,并且包含源数据中不存在的信息,这妨碍了在源目标绘图方面开展有效和高效的学习。 在本文中,我们提出了一个称为数据生成的再生学习的学习模式,它首先从源数据X产生Y'(抽取/表示Y),然后从Y产生Y。在培训期间,通过手制规则或自我监督的学习从Y获取Y。 目标Y(例如文字、语言、语言、图像、视频、视频)通常是在源数据生成过程中学习X-Y'和X'。 在生成过程中,再生成可以被视为与传统代表学习相对应,因为再学习用于数据生成(Y)的抽象(Y)数据生成,而传统代表可以处理源数据X的抽取(X'),为数据理解提供宝贵的语音数据读取(X); 2) 在再更新和 X- 学习过程中, X- 学习自我生成,可以显示自学习的自学习到自我生成。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
21+阅读 · 2020年10月11日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员