项目名称: 结合2D图像和3D点云数据的城市建筑物重建关键技术研究

项目编号: No.61263046

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 储珺

作者单位: 南昌航空大学

项目金额: 45万元

中文摘要: 城市场景三维模型在智慧城市、环境感知等领域有着非常广泛的应用。具有真实感和几何准确性的建筑物重建是城市场景重建的关键技术和研究难点之一。本项目拟以街边图像为研究对象,用SFM方法获取场景的稀疏点云,建立结合2D和3D信息的高几何准确性和真实感的城市建筑重建框架。项目首先结合2D图像特征和3D信息建立高维特征向量集,通过训练多值分类器完成场景中各类物体的识别,消除行人、车辆等物体的干扰;针对消除干扰后的建筑图像提取各类物体SIFT特征及SIFT特征点结构图模型,通过机器学习方法完成建筑立面重复结构和外挂物的识别;提取2D图像中主要方向的边缘线段,结合重复结构的分布实现2D图像具有语义意义的分割;最后在2D图像分割的基础上,融合多视点图像和3D数据,完成三维点云数据的标记和优化,最终获取具有真实感和几何准确性的建筑物的三维描述和原型系统。项目的研究成果将为数字城市建设和机器人的导航提供技术支持

中文关键词: 建筑物重建;图像分割;行人检测;多视图;

英文摘要: Urban scene 3D model has a very wide application in smart city and digital entertainment, etc. Buildings modeling provided by sense of reality and accuracy geometric level is the key technique and one of difficult researches in the urban scene reconstruction. This project is to take the street view images as the research object, use sparse 3D point clounds acquired by SFM method, then combine accurate 2D and realistic 3D information to establish a urban architecture reconstruction framework. In order to finish all kinds of objects' identification and classification, we establish confluent 2D and 3D information of the high dimension characteristic matrix and trained classifier to firstly remove distraction about pedestrians and vehicles objects; With treated building image,we then extract SIFT characteristics and SIFT spatial distribution model of building image to identify the add-on objects and repetitive structure using machine learning method; According to the building's edges and the repetitive structures' distribution, complete the image segmentation with semantic meaning; Finally, accomplish the mark and the optimization of 3D point cloud datum based on the 2D intersected image and the confluent different view's 3D optimized data, to get a prototype system describing full three-dimensional reconstructed ci

英文关键词: Building reconstruction;image segmentation;pedestrian detection;multi-view image;

成为VIP会员查看完整内容
3

相关内容

医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
55+阅读 · 2021年4月4日
专知会员服务
19+阅读 · 2021年3月18日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
69+阅读 · 2021年1月16日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
【泡泡点云时空】基于分割方法的物体六维姿态估计
泡泡机器人SLAM
18+阅读 · 2019年9月15日
【泡泡点云时空】集成深度语义分割的3D点云配准
泡泡机器人SLAM
28+阅读 · 2018年11月24日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年11月19日
小贴士
相关VIP内容
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
55+阅读 · 2021年4月4日
专知会员服务
19+阅读 · 2021年3月18日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
69+阅读 · 2021年1月16日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员