In this article, we consider the problem of testing whether two latent position random graphs are correlated. We propose a test statistic based on the kernel method and introduce the estimation procedure based on the spectral decomposition of adjacency matrices. Even if no kernel function is specified, the sample graph covariance based on our proposed estimation method will converge to the population version. The asymptotic distribution of the sample covariance can also be obtained. We design a procedure for testing independence under permutation tests and demonstrate that our proposed test statistic is consistent and valid. Our estimation method can be extended to the spectral decomposition of normalized Laplacian matrices and inhomogeneous random graphs. Our method achieves promising results on both simulated and real data.


翻译:本文考虑测试两个潜在位置随机图是否相关的问题。我们提出了一个基于核方法的检验统计量,并介绍了基于邻接矩阵的谱分解的估计方法。即使没有指定核函数,我们提出的估计方法也能使样本图协方差收敛到总体版本。样本协方差的渐近分布也可以得到。我们设计了在置换检验下的独立性检验过程,并证明了我们提出的检验统计量是一致的并且有效的。我们的估计方法可以推广到归一化拉普拉斯矩阵的谱分解和非同质随机图中。我们的方法在模拟和真实数据上取得了有希望的结果。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
43+阅读 · 2020年12月18日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
pytorch中六种常用的向量相似度评估方法
极市平台
22+阅读 · 2021年12月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关资讯
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
pytorch中六种常用的向量相似度评估方法
极市平台
22+阅读 · 2021年12月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2023年5月5日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
23+阅读 · 2017年3月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员