In this article, we consider the problem of testing whether two latent position random graphs are correlated. We propose a test statistic based on the kernel method and introduce the estimation procedure based on the spectral decomposition of adjacency matrices. Even if no kernel function is specified, the sample graph covariance based on our proposed estimation method will converge to the population version. The asymptotic distribution of the sample covariance can also be obtained. We design a procedure for testing independence under permutation tests and demonstrate that our proposed test statistic is consistent and valid. Our estimation method can be extended to the spectral decomposition of normalized Laplacian matrices and inhomogeneous random graphs. Our method achieves promising results on both simulated and real data.
翻译:本文考虑测试两个潜在位置随机图是否相关的问题。我们提出了一个基于核方法的检验统计量,并介绍了基于邻接矩阵的谱分解的估计方法。即使没有指定核函数,我们提出的估计方法也能使样本图协方差收敛到总体版本。样本协方差的渐近分布也可以得到。我们设计了在置换检验下的独立性检验过程,并证明了我们提出的检验统计量是一致的并且有效的。我们的估计方法可以推广到归一化拉普拉斯矩阵的谱分解和非同质随机图中。我们的方法在模拟和真实数据上取得了有希望的结果。