A major obstacle to achieving global convergence in distributed and federated learning is the misalignment of gradients across clients, or mini-batches due to heterogeneity and stochasticity of the distributed data. In this work, we show that data heterogeneity can in fact be exploited to improve generalization performance through implicit regularization. One way to alleviate the effects of heterogeneity is to encourage the alignment of gradients across different clients throughout training. Our analysis reveals that this goal can be accomplished by utilizing the right optimization method that replicates the implicit regularization effect of SGD, leading to gradient alignment as well as improvements in test accuracies. Since the existence of this regularization in SGD completely relies on the sequential use of different mini-batches during training, it is inherently absent when training with large mini-batches. To obtain the generalization benefits of this regularization while increasing parallelism, we propose a novel GradAlign algorithm that induces the same implicit regularization while allowing the use of arbitrarily large batches in each update. We experimentally validate the benefits of our algorithm in different distributed and federated learning settings.


翻译:在分布式和联结式学习中实现全球趋同的一个主要障碍是客户之间梯度或小型桶因分布式数据的异质性和差异性而造成的梯度失调,或小型桶因分布式数据的异性和差异性而导致的微梯度失调。在这项工作中,我们表明,数据异质性实际上可以通过隐含的正规化来加以利用,以提高一般化绩效。减轻异质性影响的一个办法是鼓励不同客户在整个培训过程中对梯度进行调整。我们的分析表明,这一目标可以通过使用正确的优化方法来实现,该方法可以复制SGD的隐性正规化效应,导致梯度调整以及测试适应性方面的改进。由于SGD存在这种正规化,完全取决于培训期间对不同小型桶的连续使用,因此在使用大型微型桶进行的培训时就必然不存在。为了获得这种正规化的普遍效益,同时增加平行主义,我们建议采用新的格拉德Align算法,在每次更新中引入同样的隐性正规化,同时允许使用任意的大型批量的批量。我们实验性地验证了我们在不同分布式和节制学习环境中的算法的好处。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员