Large-scale machine learning systems often involve data distributed across a collection of users. Federated optimization algorithms leverage this structure by communicating model updates to a central server, rather than entire datasets. In this paper, we study stochastic optimization algorithms for a personalized federated learning setting involving local and global models subject to user-level (joint) differential privacy. While learning a private global model induces a cost of privacy, local learning is perfectly private. We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy. We illustrate our theoretical results with experiments on synthetic and real-world datasets.
翻译:大型机器学习系统往往涉及在用户收集中分布的数据。 联邦优化算法通过向中央服务器而不是向整个数据集传送模型更新来利用这一结构。 在本文中,我们研究个人化的联邦化学习环境的随机优化算法,其中涉及当地和全球模式,但需遵守用户一级(联合)的差别隐私权。 学习私人全球模式会引致隐私成本,而本地学习则是完全私人的。 我们表明,协调本地学习与私人集中学习可以产生一种通用的有用效果,并改进准确性和隐私之间的权衡。 我们用合成和真实世界数据集实验来说明我们的理论结果。