We present a rotation-equivariant unsupervised learning framework for the sparse deconvolution of non-negative scalar fields defined on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via unsupervised spherical convolutional networks with guaranteed equivariance to spherical rotation. Experimentally, we first validate our proposition via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common baselines. We then show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.
翻译:我们为单位球中定义的非阴性星标字段的稀疏脱变异提供了一个旋转和不监督的学习框架。 具有多重峰值的球状信号自然出现在DifulmRI(dMRI)中, 每一个 voxel 由一种或多种信号源组成, 与白质等厌食性组织结构相对应。 由于空间和光谱部分的挥发, 临床上可行的 dMRI 挣扎, 以解决跨光纤白物质配置, 导致球状分解法的广泛发展, 以恢复基本纤维方向。 然而, 这些方法通常是线性, 与小型跨角和部分体积估计相抗争。 在这项工作中, 我们通过非超超光谱的球状共振动网络对纤维结构进行非线性估计, 保证球状旋转。 实验中, 我们首先通过广泛的单一和多壳状合成基准来验证我们的观点, 以显示与共同基线相比的竞争性性能。 我们随后展示了在轨迹计基准度数据集多上纤维色测量测量测量措施的下游下水平改进情况。