This paper proposes a novel method for testing observability in Gaussian models using discrete density approximations (deterministic samples) of (multivariate) Gaussians. Our notion of observability is defined by the existence of the maximum a posteriori estimator. In the first step of the proposed algorithm, the discrete density approximations are used to generate a single representative design observation vector to test for observability. In the second step, a number of carefully chosen design observation vectors are used to obtain information on the properties of the estimator. By using measures like the variance and the so-called local variance, we do not only obtain a binary answer to the question of observability but also provide a quantitative measure.
翻译:本文提出了一种新型方法,用于测试高斯模型的可观测性,使用(多变)高斯的离散密度近似值(确定性样本)测试高斯模型的可观测性。我们的可观测性概念以存在后继估计值最高值来界定。在拟议算法的第一步,离散密度近似值用于生成单一的代表性设计观测矢量,以测试可观测性。在第二步,使用一些精心选择的设计观测矢量来获取关于估测器特性的信息。通过使用差异和所谓的局部差异等措施,我们不仅获得对可观测性问题的二进制答案,而且还提供了定量计量。