The presence of a large number of bots in Online Social Networks (OSN) leads to undesirable social effects. Graph neural networks (GNNs) have achieved state-of-the-art performance in bot detection since they can effectively utilize user interaction. In most scenarios, the distribution of bots and humans is imbalanced, resulting in under-represent minority class samples and sub-optimal performance. However, previous GNN-based methods for bot detection seldom consider the impact of class-imbalanced issues. In this paper, we propose an over-sampling strategy for GNN (OS-GNN) that can mitigate the effect of class imbalance in bot detection. Compared with previous over-sampling methods for GNNs, OS-GNN does not call for edge synthesis, eliminating the noise inevitably introduced during the edge construction. Specifically, node features are first mapped to a feature space through neighborhood aggregation and then generated samples for the minority class in the feature space. Finally, the augmented features are fed into GNNs to train the classifiers. This framework is general and can be easily extended into different GNN architectures. The proposed framework is evaluated using three real-world bot detection benchmark datasets, and it consistently exhibits superiority over the baselines.


翻译:在线社会网络(OSN)中存在大量机器人,这会导致不良的社会效应。图形神经网络(GNN)在机器人检测方面达到了最先进的性能,因为它们能够有效利用用户互动。在多数情况下,机器人和人类的分布不平衡,导致少数类样本和次优性能存在不足。然而,以前的基于GNN的机器人检测方法很少考虑阶级平衡问题的影响。在本文中,我们提议了一种为GNN(OS-GNN)过度采样的战略,可以减轻机器人检测中阶级不平衡的影响。与以前对GNNS的过度采样方法相比,OS-GNNN并不要求进行边缘合成,消除边缘构造期间不可避免地引入的噪音。具体地说,节点特征首先通过邻居集成绘制到特征空间的地貌空间,然后为地貌空间的少数群体生成样本。最后,增强的特征被注入到GNNNN(OS-GNN)中,以培训分类者。这个框架是一般的,并且可以很容易扩展为不同的GNNNNS基准,并且能够持续地扩展到不同的GNNS基准。拟议框架。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月3日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员