In this paper, we propose a nonlinear distance metric learning scheme based on the fusion of component linear metrics. Instead of merging displacements at each data point, our model calculates the velocities induced by the component transformations, via a geodesic interpolation on a Lie transfor- mation group. Such velocities are later summed up to produce a global transformation that is guaranteed to be diffeomorphic. Consequently, pair-wise distances computed this way conform to a smooth and spatially varying metric, which can greatly benefit k-NN classification. Experiments on synthetic and real datasets demonstrate the effectiveness of our model.
翻译:在本文中,我们提出了一个非线性远程计量学习计划,其基础是组合成成份线性计量。我们的模型没有将每个数据点的偏移情况合并在一起,而是通过测地性跨变组的测深内插计算元件转换引起的速度。这种速度后来被归纳为产生一种全球变异,保证其变异性。因此,双向间距计算方法符合一个光滑和空间差异化的度量,这可以大大有利于k-NN的分类。合成和真实数据集实验显示了我们的模型的有效性。