Change detection in heterogeneous remote sensing images is crucial for disaster damage assessment. Recent methods use homogenous transformation, which transforms the heterogeneous optical and SAR remote sensing images into the same feature space, to achieve change detection. Such transformations mainly operate on the low-level feature space and may corrupt the semantic content, deteriorating the performance of change detection. To solve this problem, this paper presents a new homogeneous transformation model termed deep homogeneous feature fusion (DHFF) based on image style transfer (IST). Unlike the existing methods, the DHFF method segregates the semantic content and the style features in the heterogeneous images to perform homogeneous transformation. The separation of the semantic content and the style in homogeneous transformation prevents the corruption of image semantic content, especially in the regions of change. In this way, the detection performance is improved with accurate homogeneous transformation. Furthermore, we present a new iterative IST (IIST) strategy, where the cost function in each IST iteration measures and thus maximizes the feature homogeneity in additional new feature subspaces for change detection. After that, change detection is accomplished accurately on the original and the transformed images that are in the same feature space. Real remote sensing images acquired by SAR and optical satellites are utilized to evaluate the performance of the proposed method. The experiments demonstrate that the proposed DHFF method achieves significant improvement for change detection in heterogeneous optical and SAR remote sensing images, in terms of both accuracy rate and Kappa index.


翻译:在不同遥感图像中检测变化对于灾害损害评估至关重要。最近的方法使用同质转换,将不同的光学和合成孔径雷达遥感图像转换成相同的特征空间,以实现变化检测。这种转换主要在低层次特征空间运作,可能会腐蚀语义内容,使变化检测工作出现恶化。为了解决这个问题,本文件提出了一个新的同质转换模式,称为基于图像风格传输的深度同质特性聚合(DHFF) 。与现有方法不同,DHFF方法将异质图像中的语义内容和风格特性分离,以进行同质转换。将语义内容和同质转换风格分离,以达到同一特征空间特征的特征空间检测;将图像的语义内容和风格区分开来防止图像语义内容的腐败,特别是在变化区域。通过这种方式,检测性能的性能通过精确的同质化转化,我们提出了一个新的迭接性 IST(IST) 战略,在每次图像转换中的成本功能,从而最大限度地增加用于变化检测的新的特征亚空间分空间的特征。此后,在原始和变异性图像中进行了精确的检测,在SMASAR图像中,这是所利用的测测测测测测得的测测测图的精确度方法。

1
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
3+阅读 · 2018年3月27日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Top
微信扫码咨询专知VIP会员