Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.


翻译:最近,基于密度表示的检索模型在传输检索任务中占据了主导地位,因为与传统的稀有矢量空间模型相比,这些模型在捕捉输入文字的语义与传统稀有矢量空间模型相比,在获取输入文字的语义方面具有突出能力。密集检索模型的常见做法是利用双编码结构独立代表查询和通道。虽然这种结构效率很高,但会失去查询通道对对口之间的交互作用,从而导致精确度低下。为了提高密集检索模型的性能,同时又不丧失效率,我们提议采用GNNN-encoder模型,其中查询(访问)信息通过通过通过通过通过查询及其顶层检索通道建造的图形神经网络整合为传输(查询)表达。我们通过这一方法,维持了双编码结构,并保留了它们所代表的对口查询对口之间的一些互动信息,从而使我们能够在传输通道检索方面实现效率和效能。评价结果表明,我们的方法大大超越了MSMARCO、自然问题和TriviaQA数据集的现有模型,并实现了这些数据集上的新状态。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员