Spiking neural networks (SNNs) have drawn much attention for their high energy efficiency and recent advances in classification performance. However, unlike traditional deep learning, the robustness of SNNs to adversarial examples remains underexplored. This work advances the adversarial attack side of SNNs and makes three major contributions. First, we show that successful white-box attacks on SNNs strongly depend on the surrogate gradient estimation technique, even for adversarially trained models. Second, using the best single surrogate gradient estimator, we study the transferability of adversarial examples between SNNs and state-of-the-art architectures such as Vision Transformers (ViTs) and CNNs. Our analysis reveals two major gaps: no existing white-box attack leverages multiple surrogate estimators, and no single attack effectively fools both SNNs and non-SNN models simultaneously. Third, we propose the Mixed Dynamic Spiking Estimation (MDSE) attack, which dynamically combines multiple surrogate gradients to overcome these gaps. MDSE produces adversarial examples that fool both SNN and non-SNN models, achieving up to 91.4% higher effectiveness on SNN/ViT ensembles and a 3x boost on adversarially trained SNN ensembles over Auto-PGD. Experiments span three datasets (CIFAR-10, CIFAR-100, ImageNet) and nineteen classifiers, and we will release code and models upon publication.
翻译:暂无翻译