A railway is a complex system comprising multiple infrastructure and rolling stock assets. To operate the system safely, reliably, and efficiently, the condition many components needs to be monitored. To automate this process, data-driven fault detection and diagnostics models can be employed. In practice, however, the performance of data-driven models can be compromised if the training dataset is not representative of all possible future conditions. We propose to approach this problem by learning a feature representation that is, on the one hand, invariant to operating or environmental factors but, on the other hand, sensitive to changes in the asset's health condition. We evaluate how contrastive learning can be employed on supervised and unsupervised fault detection and diagnostics tasks given real condition monitoring datasets within a railway system - one image dataset from infrastructure assets and one time-series dataset from rolling stock assets. First, we evaluate the performance of supervised contrastive feature learning on a railway sleeper defect classification task given a labeled image dataset. Second, we evaluate the performance of unsupervised contrastive feature learning without access to faulty samples on an anomaly detection task given a railway wheel dataset. Here, we test the hypothesis of whether a feature encoder's sensitivity to degradation is also sensitive to novel fault patterns in the data. Our results demonstrate that contrastive feature learning improves the performance on the supervised classification task regarding sleepers compared to a state-of-the-art method. Moreover, on the anomaly detection task concerning the railway wheels, the detection of shelling defects is improved compared to state-of-the-art methods.
翻译:铁路是一个复杂的系统,由多种基础设施和机车资产组成。 要安全、可靠和高效地运行该系统, 需要监测许多部件的条件。 要将这一过程自动化, 可以使用数据驱动的故障检测和诊断模型。 但是, 在实践中, 如果培训数据集不能代表未来所有可能的条件, 数据驱动模型的性能可能会受损。 我们提议通过学习一个特征说明来解决这一问题, 该特征说明一方面对操作或环境因素不起作用, 另一方面, 要安全、可靠和高效地运行系统, 需要监测许多部件。 我们评估如何在铁路系统内, 实际状况监测数据集, 使用数据驱动的故障检测和诊断模型。 但是, 如果培训数据集不能代表未来所有可能的条件, 则数据驱动模型的性能会受到影响。 首先, 我们评估在有标签的图像数据集集中, 监督的反差分数分类的性能。 其次, 我们评估不精确的对状态特征的性能学习情况, 而没有获得关于铁路轮车错检测的样本, 对比性能的性能对比性能对比性能, 对比我们测试一个数据模型的性能特征, 对比性能特性, 对比性地显示我们的性任务的性变变变变的性特征, 度, 对比性变变的性比的性变的性变的性能, 对比性变的性能, 对比性变变性变性变性变性变性变的性变的性变的性变的特性是我们的变的变的变的变的变的性变性变性变性变性变的变的变性变。