Without the demand of training in reality, humans can easily detect a known concept simply based on its language description. Empowering deep learning with this ability undoubtedly enables the neural network to handle complex vision tasks, e.g., object detection, without collecting and annotating real images. To this end, this paper introduces a novel challenging learning paradigm Imaginary-Supervised Object Detection (ISOD), where neither real images nor manual annotations are allowed for training object detectors. To resolve this challenge, we propose ImaginaryNet, a framework to synthesize images by combining pretrained language model and text-to-image synthesis model. Given a class label, the language model is used to generate a full description of a scene with a target object, and the text-to-image model deployed to generate a photo-realistic image. With the synthesized images and class labels, weakly supervised object detection can then be leveraged to accomplish ISOD. By gradually introducing real images and manual annotations, ImaginaryNet can collaborate with other supervision settings to further boost detection performance. Experiments show that ImaginaryNet can (i) obtain about 70% performance in ISOD compared with the weakly supervised counterpart of the same backbone trained on real data, (ii) significantly improve the baseline while achieving state-of-the-art or comparable performance by incorporating ImaginaryNet with other supervision settings.
翻译:没有现实培训的需求,人类就很容易发现一个仅基于语言描述的已知概念。 以这种能力进行深层次学习无疑能够让神经网络处理复杂的视觉任务, 例如, 对象探测, 不收集和批注真实图像。 为此,本文件引入了一个新的具有挑战性的学习模式“ 想象- 监视对象探测( ISOD) ”, 该模式不允许培训对象探测器使用真实图像或手动说明。 为了解决这一挑战, 我们建议 ImaginaryNet, 是一个通过将预先培训的语言模型和文本到模拟合成模型结合起来来合成图像的框架。 在一个类标签中, 该语言模型用于生成一个带有目标对象的场景的全面描述, 以及用于生成照片现实图像图像的文本到图像模型。 在综合图像和类标签中, 不受监督的天体探测无法完成 ISOD 。 通过逐渐引入真实图像和手动说明, ImaginaryNet 可以与其他监督环境合作, 进一步提升检测性能。 实验显示 ImaginaryNet 能够( ii) 获得一个带有目标对象目标目标对象的场景的全场景的完整描述,, 同时通过测试性能化的对等像化的运行, 得到大约70 %, 的性能性能与ID, 比较通过测试性能的运行状态, 和基本数据, 进行测试性能的运行状态, 与ID 进行显著性能 比较性能 。