Non-parametric tests based on permutation, rotation or sign-flipping are examples of group-invariance tests. These tests test invariance of the null distribution under a set of transformations that has a group structure, in the algebraic sense. Such groups are often huge, which makes it computationally infeasible to test using the entire group. Hence, it is standard practice to test using a randomly sampled set of transformations from the group. This random sample still needs to be substantial to obtain good power and replicability. We improve upon this standard practice by using a well-designed subgroup of transformations instead of a random sample. The resulting subgroup-invariance test is still exact, as invariance under a group implies invariance under its subgroups. We illustrate this in a generalized location model and obtain more powerful tests based on the same number of transformations. In particular, we show that a subgroup-invariance test is consistent for lower signal-to-noise ratios than a test based on a random sample. For the special case of a normal location model and a particular design of the subgroup, we show that the power improvement is equivalent to the power difference between a Monte Carlo $Z$-test and a Monte Carlo $t$-test.
翻译:基于变异、旋转或信号反射的非参数测试是群件反常测试的例子。 这些测试测试在一组变异结构下,在一组变异结构下,在代数意义上,对无效分布进行试验。 这些组群通常非常巨大, 使得无法用整个组群进行计算测试。 因此, 使用随机抽样的一组组群变异测试是一种标准做法。 这种随机抽样仍然需要大量量才能获得良好的功率和可复制性。 我们使用一个设计良好的变异分组, 而不是随机抽样来改进这一标准做法。 由此产生的次子变异测试仍然精确, 正如一个组群的变异在分组下意味着不可变异。 我们用一个通用位置模型来说明这一点, 并获得基于相同变异数量的更强测试。 特别是, 我们显示子变异性子组比随机抽样测试的信号- 信号- 螺旋率比测试的更低。 对于一个正常变异模型的特殊情形, 和Monteal- 美元分组的特定设计, 我们显示一个变异力相当于MON- Chol- Chestal- Check 美元的变换的变电等。