Network meta-analysis (NMA) usually provides estimates of the relative effects with the highest possible precision. However, sparse networks with few available studies and limited direct evidence can arise, threatening the robustness and reliability of NMA estimates. In these cases, the limited amount of available information can hamper the formal evaluation of the underlying NMA assumptions of transitivity and consistency. In addition, NMA estimates from sparse networks are expected to be imprecise and possibly biased as they rely on large sample approximations which are invalid in the absence of sufficient data. We propose a Bayesian framework that allows sharing of information between two networks that pertain to different population subgroups. Specifically, we use the results from a subgroup with a lot of direct evidence (a dense network) to construct informative priors for the relative effects in the target subgroup (a sparse network). This is a two-stage approach where at the first stage we extrapolate the results of the dense network to those expected from the sparse network. This takes place by using a modified hierarchical NMA model where we add a location parameter that shifts the distribution of the relative effects to make them applicable to the target population. At the second stage, these extrapolated results are used as prior information for the sparse network. We illustrate our approach through a motivating example of psychiatric patients. Our approach results in more precise and robust estimates of the relative effects and can adequately inform clinical practice in presence of sparse networks.


翻译:网络元分析(NMA)通常以尽可能高的精确度对相对影响作出估计,然而,可能出现网络稀少、研究不多、直接证据有限的情况,从而威胁到NMA估计数的稳健性和可靠性;在这些情况下,有限的现有信息可能妨碍对NMA基本过渡性和一致性假设进行正式评价;此外,预计来自分散网络的NMA估计数不准确,而且可能带有偏见,因为它们依赖大量抽样近似值,而这种近似值在缺乏足够数据的情况下是无效的;我们提议建立巴耶西亚框架,允许两个网络之间共享与不同人口分组有关的信息;具体地说,我们利用拥有大量直接证据(密集网络)的分组的结果,为目标分组(稀少网络)的相对影响建立信息前程;这是一个两阶段办法,在第一阶段,我们将密集网络的结果推算出与稀疏网络的预期结果。 采用经修改的等级NMA模型,我们增加一个地点参数,将相对影响的分配改变到适用于目标人群。 在第二阶段,我们利用这些相对可靠的网络的结果来充分说明我们的临床结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员