This work presents MemX: a biologically-inspired attention-aware eyewear system developed with the goal of pursuing the long-awaited vision of a personalized visual Memex. MemX captures human visual attention on the fly, analyzes the salient visual content, and records moments of personal interest in the form of compact video snippets. Accurate attentive scene detection and analysis on resource-constrained platforms is challenging because these tasks are computation and energy intensive. We propose a new temporal visual attention network that unifies human visual attention tracking and salient visual content analysis. Attention tracking focuses computation-intensive video analysis on salient regions, while video analysis makes human attention detection and tracking more accurate. Using the YouTube-VIS dataset and 30 participants, we experimentally show that MemX significantly improves the attention tracking accuracy over the eye-tracking-alone method, while maintaining high system energy efficiency. We have also conducted 11 in-field pilot studies across a range of daily usage scenarios, which demonstrate the feasibility and potential benefits of MemX.
翻译:这份工作展示了MemX:一个生物刺激的注意的眼罩系统,目的是追求期待已久的个人视觉化视觉Memex的视觉影像。MemX捕捉了人类在苍蝇上的视觉关注,分析了突出的视觉内容,记录了个人以紧凑的视频片段形式感兴趣的时刻。对资源紧缺的平台进行仔细的现场探测和分析具有挑战性,因为这些任务是计算和能源密集型的。我们提议建立一个新的时间视觉关注网络,将人类视觉关注跟踪和突出的视觉内容分析统一起来。关注跟踪将计算密集的视频分析集中在显著区域,而视频分析则使人类注意力的探测和跟踪更加精确。我们利用YouTube-VIS数据集和30名参与者实验性地表明,MemX在保持高系统能效的同时,大大提高了对眼睛跟踪单独方法的准确性的注意力跟踪。我们还在一系列日常使用设想中进行了11次实地试点研究,展示了MemX的可行性和潜在效益。